
Machine Learning Guided Optimal Use of
GPU Unified Memory

Hailu Xu, Murali Emani*, Pei-Hung Lin**,
Liting Hu, Chunhua Liao**

Florida International University
Argonne National Laboratory*

Lawrence Livermore National Laboratory**

9/2/20 1

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 and supported by LLNL-LDRD 18-ERD-006. LLNL-PRES-796963. This
research was funded in part by the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357

9/2/20 2

Background – Unified Memory

Benefits of Unified Memory:
• combines the advantages of explicit copies and zero-copy access
• eliminates manual management of data migration across host and device

9/2/20 3

Background – Unified Memory

*http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf

9/2/20 4

Background – Unified Memory

NVIDIA provides the cudaMemAdvise() API to advise the UM driver

cudaMemAdvise(const void *,
size_t,
enum cudaMemoryAdvise,
int)

9/2/20 5

Background – Unified Memory

NVIDIA provides the cudaMemAdvise() API to advise the UM driver

cudaMemAdvise(const void *,
size_t,
enum cudaMemoryAdvise,
int)

data object

Choice of memory
advicedevice

Background – Unified Memory

Different choices for Unified Memory:

§ Default: default on-demand page migration to accessing processor,
using the first-touch policy

§ cudaMemAdviseSetReadMostly: Data will mostly be read and only
occasionally be written to

§ cudaMemAdviseSetPreferredLocation: Set the preferred location for
the data as the specified device

§ cudaMemAdviseSetAccessedBy: Data will be accessed by the specified
device, so prevent page faults as much as possible

9/2/20 7

Impact of different choices

Var Description

1 baseline using discrete memory for all objects

2 modified to use unified memory for all objects

3 set array a with the ReadMostly advice

4 set array a with the PreferredLocation advice on GPU

5 set array a with the AccessedBy advice on GPU

6 set array a with the PreferredLocation advice on CPU

7 set array a with the AccessedBy advice on CPU

Table1: Code variants in the gaussian benchmark

Fig. 1 Speedup of different code
variants in gaussianDifferent choices of advice lead to 3.5 times speed up

or 200x degradation.

9/2/20 8

Problem

• Extremely challenging for programmers to decide when and
how to efficiently use UM for various kinds of applications.

• For a given memory object, there is a wide range of choices

9/2/20 9

Problem

• Extremely challenging for programmers to decide when and
how to efficiently use UM for various kinds of applications.

• For a given memory object, there is a wide range of choices

Whether and how to use unified memory?

9/2/20 10

Proposed Approach
• Use machine learning-based model to guide the memory advice

choice

• Offline training and online inference phases

9/2/20 11

Offline Training
• Benchmarks with different advice; runtime metrics collection;

format to training dataset; build the classifier

unified memory

benchmark_i

benchmark_k

ReadMostly AccessedByPreferredLocation

Multiple Choices
UnifiedMemOnlyDiscreteMem

Runtime
metrics

with various choices

Training
dataset Classifier

9/2/20 12

Feature Engineering
• Nvidia Nsight Compute command line profiler to fetch detailed

runtime performance metrics of the benchmarks

• The default profiling phase contains 8 sections such as
• Compute Workload Analysis,
• Memory Workload Analysis,
• Scheduler Statistics,
• Warp State Statistics,
• Instruction Statistics,
• Launch Statistics,
• Occupancy

• Select important features using correlation and information gain
metrics

9/2/20 13

Feature Engineering

9/2/20 14

Online Inference

Runtime
applications

l1tex_cycles.avg

sm_cycles.sum
gpu_time.avg
dram_bytes.avg

...

nsight fetch 1

process via model2

Decision tree model

euler3d.cu
std::ifstream file(...);
file >> nel;
nelr = BLOCK_SIZE_0*...;

//float* h_areas = new float[nelr];
 h_areas = (float*)xplacer_malloc(...);
cudaMemAdvise(h_areas, advice,...);
...

get proper choice 3

use unified memory

add specific advice

modify benchmark4

reduce runtime
overhead, lower
latency

5

9/2/20 15

• Multiple benchmarks from Rodinia on the Lassen
supercomputer at Livermore Computing.
• Each compute node: two IBM Power9 CPUs and four Tesla V100

GPUs
• 2,753 instances for training data

Evaluation-Testbeds and benchmarks

Benchmarks Kernels Arrays Variants Input dataset
CFD 4 3 (2x6x6x6) 3

BFS 2 6 (2x6x6) 3

Gaussian 2 3 (2x6x6x6) 67

Hotspot 1 2 (2x6x6) 8

9/2/20 16

Results - Accuracy

• Random Forest classifier achieves the best
performance with F-measure up to 96.3%

• Effective and optimal predictions for the
benchmarks

9/2/20 17

Results – Reduced latency

BFS has near 40% deduction at most; CFD has
average 8% deduction in execution latency.

9/2/20 18

Results – Reduced latency

Hotspot benchmark has around 35% deduction;
Gaussian has at most 60% deduction in execution
latency.

9/2/20 19

Conclusion & Future work

• We study the hybrid use of both discrete and unified memory
APIs on GPUs, with additional consideration for selecting different
memory advice choices.

• A machine learning-based approach is proposed to guide optimal
use of GPU unified memory

• Design code transformation to enable runtime adaptation of
CUDA programs leveraging online inference decisions

Future work:
• extend to evaluate the advice choices at a finer granularity

considering calling context.
• employ runtime code generation and/or adaptation techniques to

automatically generate codes using suggested optimal memory
choices

• evaluate the overhead for collecting training data and investigate
how to reduce the overhead

9/2/20 20

Thank you!

9/2/20 21

9/2/20 27

Problem

Whether?

How? Decide which advice
should be used

Decide to use unified
memory or not

Whether and how to use unified memory?

